

Manuscript ID:
IJEBAMPSR-2025-020604

Volume: 2

Issue: 6

Month: December

Year: 2025

E-ISSN: 3065-9140

Submitted: 06-Nov.-2025

Revised: 10-Nov.-2025

Accepted: 15-Dec.-2025

Published: 31-Dec.-2025

Address for correspondence:

Dr. R. Eswari
Assistant Professor, Department of
B Com (CA) PSGR Krishnammal
college for women, Peelamedu,
Coimbatore.

Email: eswari@psgrkew.ac.in

DOI: [10.5281/zenodo.1789694](https://doi.org/10.5281/zenodo.1789694)

DOI Link:
<https://doi.org/10.5281/zenodo.1789694>

Creative Commons (CC BY-NC-SA 4.0):

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License, which allows others to remix, tweak, and build upon the work noncommercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Farmers Preference Towards Replantation and Rejuvenation Scheme by Coconut Development Board

Dr. R. Eswari¹ Prakavi M²

¹Assistant Professor, Department of B Com (CA) PSGR Krishnammal college for women, Peelamedu, Coimbatore.

²Students, Department of B Com (CA) PSGR Krishnammal college for women, Peelamedu, Coimbatore.

Abstract

The Replantation and Rejuvenation (R&R) scheme introduced by the Coconut Development Board (CDB). The scheme aims to replace old, unproductive, and diseased coconut palms with high-yielding varieties while promoting rejuvenation practices to enhance productivity and sustainability. Conducted in Coimbatore, this research investigates farmers' awareness, willingness to participate, and satisfaction with the scheme. A mixed-methods approach involving surveys and statistical analysis (Simple Percentage Analysis, ANOVA, t-tests, Friedman Rank Test, and Chi-square Test) was employed on a sample of 166 farmers. Findings reveal that while the scheme improves productivity, income, and sustainability, challenges such as delays in subsidy disbursement, lack of awareness, and short-term income loss hinder participation. The research concludes with recommendations for better outreach, timely financial support, and enhanced technical guidance to optimize the scheme's impact on coconut farming.

Key Words: Coconut Development Board, Replantation and Rejuvenation Scheme, Farmers' Preferences Coconut Farming, Agricultural Productivity.

Introduction

The Coconut Development Board (CDB), which was established in 1981 to promote coconut cultivation and development in India. In 2016-2017, the scheme was implemented in Tamil Nadu with an allocated budget of ₹20 crores. In 2022-2023, the scheme was extended in Tamil Nadu with a project cost of ₹1,315.63 lakh. This scheme aims to enhance coconut production and productivity by replacing old, unproductive, and diseased palms with high-quality seedlings. It provides financial assistance for cutting and removing old palms, replanting new seedlings, and rejuvenating existing plantations. Palms selected for removal must produce fewer than 10 coconut per year and should be clearly marked. The approval for palm removal will be granted by the Agricultural or Horticulture Officer from the respective State Department of Agriculture or Horticulture.

Statement Of The Problem

The Replantation and Rejuvenation (R&R) Scheme initiated by the Coconut Development Board aims to enhance coconut cultivation by improving the health and productivity of coconut palms through scientific nutrient management and replanting of senile and unproductive trees. However, the success of the scheme largely depends on farmers' awareness, acceptance, and willingness to adopt the recommended practices. Several factors, including financial constraints, lack of technical knowledge, labour availability, and market conditions, may influence farmers' preference for the scheme.

Scope Of The Study

The scope of the study for the Replantation and Rejuvenation Scheme covers various critical aspects to ensure sustainable and effective implementation. The study focuses on the selection of plant species, prioritizing high-yield, disease-resistant, and climate-resilient varieties. It examines the use of organic and sustainable practices, such as organic fertilizers and integrated pest management, to reduce environmental impact. Nutrient and pest management strategies are developed to enhance plant health and productivity.

How to Cite this Article:

Eswari, R., & M, P. (2025). Farmers Preference Towards Replantation and Rejuvenation Scheme by Coconut Development Board. *International Journal of Economics, Business, Accounting, Agriculture and Management towards Paradigm Shift in Research (IJEBAMPSR)*, 2(6), 27–31. <https://doi.org/10.5281/zenodo.1789694>

Objective Of The Study

To identify factors influencing farmers decision to adopt the replantation and rejuvenation scheme

Research Methodology

This study aims to identify and analyse the key factors that influence farmers decision to adopt the replantation and rejuvenation scheme. The data was collected from both primary and secondary data. Primary data is collected using Questionnaire method. The data was collected in Coimbatore city. The study has been undertaken December 2024 to February 2025.

Review Of Literature

Swapna P. (2013), examined a study on “Replanting and Rejuvenation of Coconut Gardens in Oachira and Kottarakkara Block Panchayat in Kollam District”, had been made with the objective to examine the process of implementation of the programme and its time frame and to analyse the achievement of the scheme in the total removal of disease-affected palms. The study was carried out with 30 members from each block panchayat and percentage analysis was used for analysing the data. Suggestion of the study is to improve the availability of hybrid seedlings and ensure timely distribution of subsidies. The findings of the study is to rejuvenation efforts were inadequate, and the distribution of subsidies was unequal and about

Findings Of The Study

73% of disease-affected palms in coastal areas and 66.6% in midland regions were removed. The study concludes that the replanting and rejuvenation programme had some positive effects but fell short of achieving its intended targets

N. Narmadha, K.R. Karunakaran, and A. Kandepan (2024), research paper entitled a study on “Determinants of R & R Programme Participation among Coconut Producers in Tamil Nadu: A Heckman Two Stage Selection Approach”, had been made with the objective to investigate the factors influencing coconut farmers' participation in Tamil Nadu's Replanting and Rejuvenation (R & R) scheme. The study was carried out with 120 coconut farmers and multi stage sampling technic was used and Heckman two stage model was used for analysing the data. The findings of the study includes participation include the farmer's age, education level, farming experience, awareness of the R & R programme, age of coconut trees, pest and disease incidence, availability of irrigation facilities, and access to credit for farm inputs. Suggestions and Conclusion of the study recommends large-scale implementation of the R & R program with support from the Coconut Development Board. Efforts should focus on removing old, unproductive, and diseased palms, replanting with quality seedlings at subsidized rates, and rejuvenating existing gardens through integrated practices.

Table – 1 Demographic Profile Of The Respondents

Table1.1

Demographic	Classification	No of respondents	Percentage
Age	20-30 years	41	24.7
	31-40 years	51	30.7
	41-60 years	54	32.5
	Above 60	20	12
Gender	Male	94	56.6
	Female	72	43.4
Marital status	Married	199	71.7
	Unmarried	47	28.3
Residential area	Rural	78	47
	Urban	31	18.7
	Sub urban	57	34.3
Education level	Illiterate	9	5.4
	School level	50	30.1
	Diploma	26	15.7
	Under graduate	53	31.9
	Post graduate	28	16.9
Monthly Income	Upto 25000	38	22.9
	25000-50000	53	31.9
	50000-100000	65	39.2
	Above 150000	10	6

Interpretation

The above table reveals that 24.7 percent belongs to the age category of 41-50 years, 56.6 percent of them are male respondents, 71.7 percent

of the respondents are married, 47 percent of respondents are belonged to rural area, 31.9 percent of the respondents studied under graduate, and 39.2

percent of the respondent's monthly income is between Rs. 50000-100000.

To Identify Factors Influencing Farmers Decision To Adopt The Replantation And Rejuvenation Scheme

Table-2 Relationship Between Demographic Variables And Study Variable – Chi Square Test

2.1 Residential Area Of The Respondents And Types Of Fertilizers

H0: “There is significant relationship between the residential area and types of fertilizers”

Table 2.1
Relationship relationship between the residential area and types of fertilizers

Residential area	Types of fertilizers					P value	Sig	S/NS
	Organic fertilizers	Chemical fertilizers	Mixed fertilizers	None	Total			
Rural	22	6	46	4	78	28.925	0.001	S
Urban	7	14	8	2	31			
Semi urban	21	6	25	5	57			
Total	50	26	79	11	166			

Source: Computed Data

S – Significant NS – Not Significant

Significant at 5 Percentage Level.

Interpretation

The above table indicates that there is no significant relationship ($\chi^2 = 28.925$, $P = 0.001$) between the residential area and types of fertilizers. As the significant value is less than 0.05 it shows that there is significant relationship between the residential area and types of fertilizers. **Hence the null hypothesis was rejected.**

2.2 Relationship Between Residential Area And Types Of Irrigation

H0: “There is no significant relationship between the residential area and types of irrigation.”

Table 2.2
Relationship between residential area and types of irrigation

Residential area	Types of irrigation					P value	Sig	S/NS
	Well	Borewell	Canal irrigation	Other	Total			
Rural	44	19	9	6	79	10.903	0.091	NS
Urban	12	13	5	1	31			
Semi urban	18	23	9	7	57			
Total	74	55	23	14	166			

Source: Computed Data

S – Significant NS – Not Significant

Significant at 5 Percentage Level

Interpretation

The above table indicates that there is no significant relationship ($\chi^2 = 10.903$, $P = 0.091$) between residential area and types of irrigation. As the significant value is more than 0.05 it shows that there is no significant relationship between residential area and types of irrigation. **Hence the null hypothesis is accepted.**

3.1 Factors Influence To Choose Replantation And Rejuvenation Scheme - Friedman's Rank Test

Table 3.1

Factors influence to choose replantation and rejuvenation scheme

Factors influencing		Mean Rank	Rank	N	166
1	Financial support	2.11	I	Chi- Square df Asymp.sig.	269.663 5 <.001
2	Reduction in pest problem	2.60	II		
3	Improve soil quality	2.98	III		
4	Control of disease	4.32	IV		
5	Improvement in coconut yield	4.36	V		
6	Availability of organic farming	4.63	VI		

Source: computed data

Interpretation

The above table predicts the mean rank of factors influence are the lowest mean of 2.11 was obtained by Financial support so that is considered as the first preferred factors, it is followed by reduction in pest problem with (2.60 2nd rank), them by Improve soil quality with the score of (2.98 3rd rank), Control of disease as fourth preferred career with a mean score (4.32 4th rank), followed by Improvement in coconut yield with the mean score of (4.36 5th rank) and the least influenced factor is Availability of organic farming having mean score of 7.73.

Suggestions

- The government should arrange and conduct more awareness programs for farmers to educate them about the benefits and procedures of the Replantation and Rejuvenation Scheme
- Agricultural officers to visit farms regularly, offering hands-on guidance on tree removal, replanting, and rejuvenation techniques, ensuring farmers receive practical support throughout the process.
- Educate farmers about the benefits of the R&R scheme, including increased productivity, financial assistance, and improved farm sustainability.

Conclusions

Replantation and Rejuvenation (R&R) Scheme by the Coconut Development Board plays a crucial role in improving coconut productivity and sustainability. By encouraging the removal of old and unproductive trees and replacing them with high-yielding varieties, thereby enhancing productivity and income for farmers the scheme enhances farm income and ensures long-term agricultural availability. However, several challenges, including subsidy delays, lack of awareness, emotional attachment to old trees, and financial constraints, hinder its full adoption.

Acknowledgment

The researchers express their sincere gratitude to all the farmers of Coimbatore district who

generously shared their time, experiences, and valuable insights during the data collection phase. Their active participation made this study on the Replantation and Rejuvenation (R&R) Scheme of the Coconut Development Board truly meaningful and impactful.

We extend our heartfelt thanks to the officials of the Coconut Development Board and the State Department of Agriculture and Horticulture for providing essential information, guidance, and support, which greatly contributed to the successful completion of this research.

Our deep appreciation goes to Dr. (Mrs.) R. Eswari, Assistant Professor, PSGR Krishnammal College for Women, Coimbatore, for her continuous encouragement, constructive suggestions, and academic supervision throughout the study.

We also acknowledge the contributions of all scholars, experts, and authors whose works have enriched the review of literature and strengthened the analytical foundation of this research.

Finally, we convey our thanks to our family, friends, and all well-wishers for their constant motivation and support during the research process.

Financial support and sponsorship

Nil.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

1. N. Narmadha, K.R. Karunakaran, and A. Kandeepan (2024), "Determinants of R & R Programme Participation among Coconut Producers in Tamil Nadu: A Heckman Two Stage Selection Approach". Journal of Plantation Crops, vol.52, no.1, pp 41-47.
2. Coconut Development Board (2024), "Replanting and Rejuvenation of Coconut Gardens". Journal of CDB, vol.40, pp 1-7.

3. **Dennis Ouma Ong PhD and Dr. Benard Otieno Abel, PhD (2024)**, "Farmers' Knowledge and Perceptions in the Production of Coconut Rhinoceros Beetle (*Oryctes rhinoceros*) for Enhanced Food Security in Kenya". *East African Journal of Agriculture and Biotechnology*, Vol. 7, Issue 1, p-ISSN: 2707-4293, e-ISSN: 2707-4307.
4. **V. Kavithamani, S. UmaMaheswari (2023)**, "Investigation of deep learning for whitefly identification in coconut tree leaves", *Intelligent Systems with Applications*, vol.20, no, 200290.
5. **A. Sivapragasam and T. Sathis Sri (2023)**, "Plant Resistance to Pests and Diseases: Potency in Coconut", *IOP Conf. Series: Earth and Environmental Science*, vol. 1179, no. 012001.
6. **Hengky Novarianto (2022)**, "Estimating Coconut Production and Productivity of Local Tall in Taliabu Island Using Drone and Sampling Population", *Journal of Coconut Research & Development*, vol. 38, pp. 22-29.
7. **Miguel Tzec-Simá, Jean Wildort Félix, María Granados-Alegria, Mónica Aparicio-Or, Dilery Juárez-Monroy (2022)**, "Potential of Omics to Control Diseases and Pests in the Coconut Tree". *Journal of Agronomy*, vol.12, no.3164, pp.1-17.
8. **ICAR-Central Plantation Crops Research Institute (2021)**, "Economics and Employment Generation under Coconut Based Cropping System", *Indian coconut journal*, Vol. LXIV, no.2, pp.1-40.
9. **S. Wulandari and J. C. Alouw (2021)**, "Scheme to Support Coconut Replanting Program on Smallholder Plantation". *Journal of IOP Conf. Series: Earth and Environmental Science*, vol.892, no. 012088.
10. **S. Kavivarshini, K. Mahandrankumar, and K. Prabakaran (2020)**, titled as "Factors Responsible for Replanting of Coconut as Perceived by the Cyclone Affected Coconut Growers", *Ind. Journal Pure App. Biosci*, vol.8, no.6, pp.298-301.